Systematic Study of Particle Production at High p_T with the PHENIX Experiment at RHIC

Henner Buesching

Brookhaven National Laboratory, Upton, NY 11973, USA

Abstract. The PHENIX experiment at RHIC has analyzed a wealth of data for different particle species, collision energies ($\sqrt{s_{NN}}$ = 62.4, 130, 200 GeV) and collision systems (p+p, d+Au, Cu+Cu, Au+Au) allowing a detailed study of particle production at high p_T . A selection of new results on single particle spectra is presented.

Keywords: Relativistic Heavy Ion Collisions

PACS: 25.75.-q

Previous measurements of the nuclear modification factor R_{AA} at RHIC have shown both a strong suppression of π^0 and charged-hadron yields in central Au+Au collisions for $p_T > 5$ GeV/c at mid rapidity independent of p_T and particle species [1, 2], and an enhanced proton yield (relative to pions) at intermediate p_T (2-5 GeV/c) [3]. The dependence on p_T and on the particle species reflect the detailed interplay between jet quenching and other effects such as flow and recombination.

Recently the PHENIX experiment could extend the p_T reach of π^0 's in Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV by a high statistics run (RHIC Run-4). Figure 1 (left) shows R_{AA} for π^0 's, η 's and direct γ 's as a function of p_T for central Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV. While direct γ 's are unsuppressed compared to the T_{AA} -scaled

FIGURE 1. (left) R_{AA} for π^0 's, η 's and direct photons as a function of p_T for central Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV. (right) R_{AA} for π^0 's in Cu+Cu and Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV for a similar number of participants. The error bars include all point-to-point errors, in case of error boxes or the error band at $R_{AA} = 1$ these errors have to be added.

FIGURE 2. \overline{p}/π^- ratio as a function of p_T (left) and as a function of N_{part} at $p_T = 2$ GeV/c (right) in Cu+Cu and Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV. Corrections for feed-down from weak decays are not applied.

reference [4] (with $\langle N_{coll} \rangle \equiv \langle T_{AA} \rangle \cdot \sigma_{pp}^{inel}$), π^0 's and η 's are similarly suppressed by a factor of \sim 5 compared to the corresponding cross-sections measured in p+p. This shows that within current uncertainties, light-quark mesons at RHIC show a common suppression, independent of their mass (the η is four times heavier than the π^0). The suppression for π^0 's is almost constant even up to the highest p_T measured. The results are in agreement with expectations of energy loss effects with initial gluon densities in the order of $dN^g/dy \approx 1100$ (yellow curve in Fig. 1) [5].

The recently measured Cu+Cu data sets allow the study of the influence of the collision system on particle production at high p_T . Fig. 1 (right) shows R_{AA} for π^0 's in Cu+Cu and Au+Au collisions at $\sqrt{s_{NN}}=200$ GeV for centrality selections with a similar number of participants N_{part} . The N_{part} value is associated with the centrality using a Glauber model calculation. It can be seen that π^0 's are suppressed by a similar factor for similar N_{part} in the two systems.

An N_{part} -scaling behavior can also be seen in the enhancement of the proton to pion ratio at intermediate p_T (2-5 GeV/c) that was first observed in Au+Au collisions at RHIC. Figure 2 (left) shows a comparison of the \overline{p}/π^- ratio in Cu+Cu and Au+Au collisions at $\sqrt{s_{NN}}=200$ GeV as a function of p_T for centrality selections with a similar number of participants. Figure 2 (right) shows the same ratio as a function of N_{part} calculated at $p_T=2$ GeV/c. The data shows similar p_T and system-size (N_{part}) dependences in Cu+Cu and Au+Au, with a slight difference in the magnitude. The N_{part} -scaling behavior is also seen in p/π^+ and K/π ratios (not shown).

To study the dependence of particle production on the beam energy, additional data at $\sqrt{s_{NN}} = 62.4$ GeV was taken. This lower-energy data provides important information on baryon production at an energy between SPS and RHIC. Figure 3 shows the p/ π^+ and \overline{p}/π^- ratios in central Au+Au collisions at 62.4 GeV and 200 GeV as a function of p_T . In comparison to the particle ratios at 200 GeV, the ratios at 62.4 GeV show a slightly larger proton contribution at intermediate p_T but a smaller antiproton contribution. Possible explanations for the larger ratio of p/ π include the larger difference between the slopes of spectra from fragmentation and recombination processes at 62.4 GeV than that at 200 GeV [6].

FIGURE 3. p/π^+ (left) and \overline{p}/π^- (right) ratios in central (0-10%) Au+Au collisions at $\sqrt{s_{NN}} = 62.4$ GeV and 200 GeV. The feed-down corrections from weak decays are not applied.

SUMMARY

New results on single particle production in Au+Au collisions at $\sqrt{s_{NN}} = 62.4$ and 200 GeV and Cu+Cu collisions at $\sqrt{s_{NN}} = 200$ GeV are presented. In Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV direct γ 's are unsuppressed compared to the T_{AA} -scaled p + p reference, π^0 's and η 's are suppressed by the same magnitude (factor \sim 5). The suppression for π^0 's is almost constant even up to the highest p_T measured and in agreement with model calculations of energy loss effects $(dN^g/dy \approx 1100)$.

Both, R_{AA} for π^0 's and the p/ π ratio, show an N_{part} scaling behaviour in a comparison of particle production in Au+Au and Cu+Cu collisions at $\sqrt{s_{NN}} = 200$ GeV.

The enhanced p/π ratio at intermediate p_T is observed in all collision systems: In comparison to the particle ratios at 200 GeV, the ratios at 62.4 GeV show a slightly larger proton contribution at intermediate p_T but a smaller antiproton contribution.

REFERENCES

- 1. S. S. Adler *et al.* [PHENIX], Phys. Rev. Lett. **91**, 072301 (2003).
- 2. S. S. Adler et al. [PHENIX], Phys. Rev C 69, 034910 (2004).
- 3. S. S. Adler et al. [PHENIX], Phys. Rev. Lett. 91, 172301 (2003).
- 4. S. S. Adler et al. [PHENIX], Phys. Rev. Lett. 94, 232301 (2005).
- 5. I. Vitev and M. Gyulassy, Phys. Rev. Lett. 89, 252301 (2002).
- 6. V. Greco, C. M. Ko, I. Vitev, Phys. Rev. C 71, 041901 (2005).